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Abstract—Recently, circuit analysis and optimization featuring model building or updating during optimization, consuming
neural-network models have been proposed, reducing the com- yaluable on-line CPU time), and the lookup table approach,

putational time during optimization while keeping the accuracy (e.g., [5], [6], to approximate and to replace accurate device
of physics-based models. We present a novel approach for fast® "2 *=-' .= "= .
training of such neural-network models based on the sparse OF CIrcuit simulations). However, the size of the table exponen-

matrix concept. The new training technique does not require tially grows with dimension and the table becomes too difficult

any structure change in neural networks, but makes use of the to generate and manage when many parameters of a device or
inherent nature of neural networks that for each pattern some 5 circuit are involved.

neuron activations are close to zero, and hence, have no effect on On the other hand. neural networks have been proposed
network outputs and weights update. Much of the computation ! prop

effort is saved over standard training techniques, while achieving t0 solve a wide variety of problems apart from the signal-
the same accuracy. FET device and VLSI interconnect modeling processing area. It has been applied to microwave impedance

examples verified the proposed technique. matching [7] to study the effects of design factors on printed
Index Terms—Modeling, neural network, optimization, simu-  Circuit-board (PCB) assembly yield [8], in modeling the prop-
lation. erties of silicon—dioxide films [9], in via modeling [10] and

minimization problems [11], in manufacturing process mod-
eling [12], and in monolithic-microwave integrated-circuit
o ] MMIC) passive-element modeling [13]. Recently, the feasi-
CCURATE and fast circuit and device models are qfjjiyy and efficiency of using neural networks for physics-based
important concern in circuit analysis and optimizatiofye,jce and circuit-level modeling for interactive computer-
problems [1], [2]. For device models, the accuracy of physiC§jjeq design (CAD) and optimization have been demonstrated
based _models_ of actlve_, passive, and transm|53|0q-llne f4]—[16]. The approach uses a feed-forward neural-network
ments is required, but is at the expense of much increa gdel to represent devices and circuits. The model is much

computational cost [3] due to the complexity of phySICgimpler than device physics equations while retaining similar

equat:OES, Vg#Chitcoirr]:ISIttiOfnﬁiil\(/]I E/qugtions |$/Ei3r.|g.’thMaX\\/N?” ccuracy. Much computation is shifted from on-line optimiza-
equations). Circuit simulatio olves: 1) solving the ove a||%Jn to off-line training of neural-network models.

circuit equation by relating currents and voltages at eac . : i
node of the circuit and 2) finding the output response of Backprqpagatmn (BP) [1.7]' [1.8]. is probably the most_com
interest (e.g., delay in an interconnect network). Solving thnéon algorithm used today in training feed-forward multilayer

e ' erceptron (MLP) neural networks. However, BP despite

circuit equation is central processing unit (CPU intensivg, . . o
q P 9 ( ) popularity, suffers from serious limitations such as the

especially for complex circuits such as high-speed VL at fort and | training. ti This is al
interconnects [1]. In addition, circuit analysis and optimizatiof:lomp,’u ation etiort and ‘onger training times. IS 1S also
in our application of circuit optimization and statistical

is an iterative process in nature and requires repeated cir i . e .
simulation, which is CPU time consuming. To address thffSI9n [15]. To alleviate these difficulties, much studying

problem, the following two types of approximations have beeq,pout aIgothms has been do.ne to ach|eve-faster learning.
previously utilized: the multidimensional polynomial (or itsThese algorlthm§ are baseq e|t.her on ghanglng the network
variants such as splines or response surface) models, (e.g., §8/Cture [20], using new activation functions [21], or turning
[4], to approximate and replace original simulations durinlp OPtimization techniques [22]-[24]. .
optimization; however, this approach can handle only mild " this paper, we present a novel approach for fast training

nonlinearity in high-dimensional space. It typically requireSf feed-forward MLP neural networks based on the sparse
matrix and decomposition concepts. The sparsity concept is
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by bio bkp A. Neural-Network Models

To model such a nonlinear relationship, a multilayer neural
network is employed. We use a three-layer neural network with
n neurons in the input layep, neurons in the output layer, and
g neurons in the hidden layer, as shown in Fig. 1. The input
and output layers correspond to device or circuit parameters
x and output responseg, respectively. The hidden layer is
represented by g-vectorz. Let a;, = [ar1 ap2 -+ agn]t
and by, = [br1 b2 - bkp]T be vectors representing the
kth samples; of the inputs and outputs, respectively,—

1,2, ..., N, where N is the total number of data samples.
The weighting factors between the input and the hidden layers
arew;y, and between the hidden and the output layers:gre
wherei =1,2,---,n,h=1,2,---,¢qandj =1,2, ---, p.

The output from the neural network can be computed from
circuit and device parametens as

q
yj = Z ZnUh; 1)
h=1
where z;, is the output activation of théth hidden neuron,
defined as
1
Zh = = n =
1+exp [— ariwin | — 6
agy 2 a, P - <Zz=; ki zh) h-
Fig. 1. Standard neural-network configuration. _ _ 1 _ 2)
n
o l+exp |- Z-Tkiwih -t
that for each sample (some neuron activations are close to | \i=1 |

zero), gives rise to sparsity in the network, and hence, hag d whered,, is a threshold value for thath hidden neuron.

no effect on network outputs and weights update. Much o

the comp.utauon effort is s_aved while achieving the Same \1odel Determination with Conventional
accuracy if on a pattern basis these neurons are not taken teonse-Training Approach
consideration in the learning process. It is understood that the
sparse approach is applied once the neural-network structuréhe procedure to determine parameters in the neural-
is optimized, i.e., the best suitable number of hidden neurofgtwork model, is called neural-network learning or training.
is determined. During learning, the neural network automatically adjusts its
The sparse technique is used to train neural networ€ights and thresholds (i.eu;, vn;, andéy,) so that the error
for both device- and circuit-level modeling. At the deviceZ between neural-network predicted and sampled outputs
level, the neural network represents a physics-oriented FEg is as follows:
model, yet without the need to solve device physics equations N N »
repeatedly during optimization. At the circuit level, the neural _ E_ 1 B RY
network speeds up optimization by replacing repeated circuit B=2 B'=2 152 (b ®)
simulations. Compared to standard BP training (hereafter
referred to as thelense techniq)ehe sparse approach yieldsand is minimized. The weights and thresholds update equations

CPU speed up while maintaining the same accuracy. are given in [15]. In a conventional dense-training technique,
all weights and all thresholds are updated for each sample, and

this requires computing the error gradient for each weight and
for each threshold in the network.

The sample data;, = (ag, bi) can be obtained by device

A neural network consists of a collection of interconnectear circuit simulations done off-line, or obtained directly from
neurons. Lek be an-vector containing parameters of a giveimeasurement. Equations (1) and (2) constitute the forward
device or a circuit, e.g., gate-length and gatewidth of a FE¥opagation, while (3) and the update equations constitute the
or geometrical and physical parameters of high-speed VLBAckward propagation. During training, an epoch represents
interconnects [1], etc. Let be ap-vector representing variousone forward and backward propagation through all training
responses of the device or the circuit under consideratimamples. Many epochs are needed to minimize the éfrimr
e.g., drain current of an FET. The relationship betwgeand a complete training process. The model parameters are then
responsey is multidimensional and nonlinear. the final set of valuesv;x, vx;, andy,.

k=1 k=1 j=1

Il. NEURAL-NETWORK MODELS FORDEVICES AND CIRCUITS



1698 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 10, OCTOBER 1997

Ill. A SPARSETRAINING APPROACH
TO MODEL DETERMINATION

It is an inherent nature of neural-network models that on a

are not. Our approach makes use of this inherent informatio®sg

to speed up the training process as follows.
Consider the same three-layer neural network described

in Section Il. Let H be the set containing all hidden neu-

rons indexes, i.e.H = {1, 2, ---, q}. Let Sy, be a small

positive number representing a threshold value. In the neural-

network model structure, the outputsand all error gradients

OE* [Ovy,;, OE* |Ow,;,, andOE* /96, are proportional tay,.  Sample sy, Hy = {1, 5, 8}

If, for a sample patterrs;, the output of a hidden neuron Neurons2,3,4,6,7.9,and 10

have zero output.

zn < Sin, then that neuron has no effect on the network

outputs and weights for that particular sample pattern. \W&. 2. Example of a neural-network configuration showing sparsity and

call Sy, the sparsity threshold. The sparse matrix concept is iS¢ ndex sets.

associate each samplgwith a sparse-index séf;, containing

a subset of hidden neurons that have an effect on the netwasing the sparse technique is computed as

and disregard the others. In other words

Ay 3p A3 a1 Ao A3

Sample s, 1, Hiy1 = {3, 5, 6, 10}

Neurons 1,2.4,7,8,and 9 have
Zero output.

h

OE¥

—(y; — bej)on,  h € Hy 10
Hk = {h|zh Z Stln h= 17 27 T (.I}v avhj (yj k1)7} & ( )

wherek =1,2,-.- N OE¥ L
4 . =zn(1—2n) Jz::l (Y5 — brj)vnjani, h € Hy (11)

and

wheregq is the total number of hidden neurons aidis the 9E* P

total number of samples. We then hakig ¢ H. The sparse- =~ =2n(1— 1) Z (yj — brj)vny, he Hy. (12)

o
Il
—

index setsHy, k=1, 2, ---, N, are not necessarily disjoint.
Fig. 2 best illustrates the sparsity concept. Once the subsets ) )
Hy, are determined, the computation effort in the forward and " Fig- 3, the average percentage sparsity of the network is

backward propagations is substantially reduced by using tAi@tted against the number of epochs. The change of sparsity,
sparse technique as as depicted clearly in Fig. 3, is due to the fact that each hidden

neuron becomes active one time or the other for at least one
or more presented samples. This implies that all weights and

Yi = Z #hUhg ) piases are adjusted between epochs, and hence, hidden neuron
heHi 1 activations could change and subsequently alter the network
2 = _ _ sparsity. It is then necessary to refresh the sparse-index sets
- . Hj, frequently during training. A refresh-cycle parameter
1+exp _<z_; akzwm) —On is consequently introduced and should be chosen so that
) Z_l B the training time is minimized while not compromising the
= _ — =, h € Hy, (6) accuracy.
l+exp |- <Z ﬂikiwih> -0
- Vil - IV. SPARSETRAINING ALGORITHM
where
A. Algorithm
k
Uﬁrl IUﬁj - + O‘(U;ij _ U;ij_l)v he He (7) The sparsg—training technique i§ builj[ in_conjunction with
Ovp; the BP learning algorithm and begins with finding the sparse-
k index setsH;. Training then proceeds with processing only
k+1 _, k ko k=1 . : . o
Wire =W = g + afwiy, — wi ), h€Hi (8) higden nodes belonging téf; while avoiding the others.
and Learning-rate adaptation and the use of a momentum term
OEF which are useful to further speed up the training process and
k+1 _ pk k k—1 . . . ..
0,7 =0 —n a0y, + (b = 6,77), h € Hy (9 avoid settling in an early local minimum could also be used

in addition to the sparse-learning algorithm as follows.

wheren and « are positive-valued learning rate and momen- Step 1. Choose the number of hidden neurapand ini-

tum, respectively. The sensitivity through the neural network

tialize the weightsw;;, vy, and thresholdg;, with
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Fig. 3. Trend of network sparsity as training proceeds. The average sparsity is calculated according to (13).

small random numbers. Choose initial valuesfor
and c.

Choose values for the sparsity thresholy,
refresh-cycle R, and number of iterationsVg.
Setr =1, ng = 1.

Sparsity index set refresh cycle:

Step 2.

Step 3.

For each samples;, calculate only the output
of all hidden neurons and determine the spars
index setH;, following (4).

Setk = 1.
Supply training sample;, = (ag, by), let x = ay,.
Forward propagation:

Step 4.
Step 5.
Step 6.

Compute the network’s outpytfollowing (5) and
(6), considering only hidden neurohsc Hjy,.

Step 7. Back propagation of the error:

Compute the errorE* given in (3), and the
gradientsdE* /duy,;, OE* /0wy, and GE* /96,
in (10)—(12), whereh € Hy,.

Adjust the parameters of the netwotk;,, vy,;,
and 8y, using (7)—(9) withh € Hj.

Step 8.
Step 9.

k=k+1,if Kk < N go to Step 5.

Compute the cumulative errdt. If the cumulative

error £/ is less than a given training toleranee

stop the training process.

Step 10. Adapt learning rate; and momentuniy.

Step 11.» =+ 1, if » < R then go to Step 4.

Step 12.ng = ng+1, if ng < Ng go to Step 3 to refresh
the sparse-index sets.

Step 13. Stop.

ity

Fig. 4. Neural network for the MESFET model.

B. Sparse-Training Parameters

The efficiency of the sparse-training technique depends on
the following parameters.

e Sparsity threshold,: This parameter controls the spar-
sity threshold level of the network, so it should be chosen
carefully. A too large value for this parameter implies
faster training but may affect the network accuracy and
generalization.

Sparsity refresh-cycle?: This parameter represents the
number of elapsed training epochs after which the sparse-
index setsH; are recalculated or refreshed. Since gen-
erally the network sparsity change is substantial at the
beginning of training while it stabilizes around a constant
value at the end of training as shown in Fig. 3, this
parameter should be made small at the start and gradually
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Fig. 5. Network learning curve for both dense- and sparse-training techniques. The training ésraomputed following (3).

increased toward the end of training. TABLE |
+ Learning rate; and momentuma: The benefit as well as SUMMARY OF SPARSITY RESULTS ON SPARCSaTION 20. FET
. . ExampLE: ¢ = 100, N = 1000. VALUES BAseD oN 100 BPocHs
the choice of these parameters remain the same as for the !
dense technique [15]. St R Average Sparsity | CPU Savings
The optimal values of the above-mentioned parameters____| (Epochs) (%) (sec) |in CPU(%)
are problem-dependent. Actual values of all these training© - 0 122.35 -
parameters are given in examples 1 and 2 in Section V. 0.001 10 31.1 90.60 26.0
0.01 10 56.9 63.25 48.3
C. Estimation of Speed-Up Ratio 0 - 0 116.59 N
) ] ] . ) 0.001 20 31.6 82.7 29.0
This applies for the weight adjustments in the backward ; o, 20 57.4 53.45 54.2

pass. Let 1) be the number of hidden nodes in each sparse-
index setHy, k=1, 2, ---, N; 2) T be the number of total
epochs used for training; and 8) be the computation effort
per sample required to update all the weights and biases linked

to one hidden neuron, i.e;, Wix, andfy, j = 1,2, .-+, p, A. Physics-Oriented Neural-Network

¢=1,2 -, n andhis fixed. Model of a MESFET Device
For the standard approach, gllhidden neurons are used

for each of thelV samples. For the sparse approach, assuming”hysics-based device models are very CPU intensive, es-

that the sparse pattern does not change between epochs,pﬁ?éa"y when used for optimization or iterative simulations.
network average sparsity is A neural-network model for this kind of device will be very

efficient in speeding up simulation and optimization [15]. The

V. EXAMPLES

N physical FET model chosen is the Khatibzadeh and Trew
ZQk model [28]. Fig. 4 shows the representation of the neural-
Average sparsity= 1 — k=1 (13) network model input—output parameters, wheig is the
aN drain-to-source conduction current.
and the speed-up ratio is then A three-layer feed-forward neural network is used to model

TOuN N this FET. The input vectox for the neural network has
qf - 4 (14) six parameters (including physical parameters): gate-lehgth

Speed-up ratie= : ~

atewidth W, channel-thickness, and doping-densityV,,

T@Z(]k qu g ping WV
k=1 k=1

and the gate—source and drain—source voltdgesand V..

The number of neurong in the hidden layer is 100. To
sinceq; < ¢, the above speed-up ratio is always greater thamin the neural network, each input parameter is allowed to
one. vary over a certain range, as used in [15]. Both standard
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Fig. 6. Comparison of the dc characteristics using a neural-network model trained with the sparse teghnigitie that trained with the dense technique
(o) and that of the Khatibzadeh and Trew modet)(

TABLE 1 TLs
TREND OF SPARSITY WITH TRAINING
Average Sparsity %
# Epochs | S, = 0.001 | S;, = 0.01
0 0.02 1.3
10 30.6 56.5
100 31.1 56.9
200 31.6 57.4
10000 34.7 59.8

BP and proposed sparse-learning algorithms are used to train -

the network. Table | compares the CPU time results of bofiw. 7. Circuit model of a typical VLSI interconnect configuration in a PCB.
techniques after 100 epochs of training and for different

values of sparsity threshold;;, and refresh-cycleR. Note

that Si;, = 0 corresponds to the standard dense technique. On

the other hand, Table Il depicts the trend of network sparsity dy dy d3 dy ds dg

as training proceeds for different values of the sparsity-
threshold parameter. Fig. 5 shows the network learning curve.
The sparse-training techniqgue may use similar or slightly
more epochs compared to the dense technique, but since the
computation per epoch is much less, the total training time
achieved by the sparse approach is much lower.

We use new data which is different from the training
samples for verification of the neural-network models. DC
analysis predicted with our trained neural-network models are
compared to those simulated using the original Khatibzadeh
and Trew model shown in Fig. 6.

B. VLSI Interconnect Delay Modeling RyRiRR3R4RsR6 C1Co C3CyCsC VT, 1y 1y 15 1y 15 16

Signal delay through interconnect networks is an importagly. 8. Neural network for modeling the signal delay of the VLSI intercon-
criteria in high-speed VLSI system design [1]. Fig. 7 reprerect example.
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TABLE I
RANGES OF NEURAL NETWORK INPUT PARAMETERS. VLSI-DELAY EXAMPLE

Parameters Notation Range Unit | Type
Transmission line length |{;, :=1--.6 |1-15 cm Continuous
Termination Resistance R, i=1---6]0.1, 3, 10, 20, 100 KQ | Discrete
Termination Capacitance | C;, : =1-.-6 | 3.3, 4.5, 5 pf Discrete
Source Resistance R, 13.3, 20, 23.3, 40, 45 | Q Discrete
Input Peak Voltage Ve 0.8, 3.1, 3.2, 4.9, 5 \% Discrete
Input Rise Time T, 1.6, 2.5, 3.5, 5, 10 ns Discrete

Sparsity Threshold = 0.001

1600 T T T T T T
1400 .
1200} -
1000 -
[223
@
3
3 800 -
G
*
600F .
400 e
200 -
0 —1 1 1 —n
10 20 30 40 50 60 70 80
% Sparsity
Fig. 9. Training samples’ sparsity distribution fdi;, = 0.001.

sents a high-speed VLSI interconnect network modeled byTo clearly show how sparse the network is, Figs. 9 and
six transmission lines and sRC termination ports. Repeated10 depict the distribution of sparsity over all 6000 training
signal-delay analysis of this type of circuit is CPU intensive $amples for a sparsity threshafgh, = 0.001 and Sy, = 0.01,
done using conventional circuit simulators such as SPICE i@spectively. Table IV compares the CPU time used when
Numerical Inverse Laplace Transform (NILT) [29], especiallytilizing both dense- and sparse-training techniques on a
when a large number of parameters is considered. SPARCStation 5. After the network is trained, 4000 new
A three-layer feed-forward neural network with 21 inpu€onfigurations not used for training are used to test the
nodes, 30 hidden nodes, and 6 output nodes is used, as shB@¥ model. Fig. 11 shows the good agreement between
in Fig. 8. The 21 input parameters are allowed to take d¢he neural-network model trained with the sparse technique
values so that all possible configurations which conform f'd original network simulation results. The CPU time
standard industry requirements are considered. These ra on a SPARCStation 2 to predict the delay of the

of values could be either discrete or continuous, as depic 9100 configurations was 1.25 min for the neural-network

in Table lll. The six outputs are the propagation delays proach while it was 3.4 h for the network simulation
the six termination ports, where delay is the time taken f&pproach.

the signal to reach 80% of its steady-state value. The sample

data required to build this model was obtained by off-line VI.  CONCLUSIONS

simulation using NILT [29]. It is to be noted that the number |n this paper, we have presented a novel neural-network
of hidden nodesy( = 30) is the optimized value for this model, training approach based on the sparse matrix concept. The
i.e., if the neural network is used with fewer hidden nodedeveloped technique uses the inherent property of neural
the model trained with a standard BP will not converge to metworks in that the internal activations are usually sparse.

proper accuracy [16]. Exploiting this feature, a new algorithm has been developed
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Sparsity Threshold = 0.01
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Fig. 10. Training samples’ sparsity distribution fék;, = 0.01.
" TABLE IV
™ +5% < SUMMARY OF SPARSITY RESULTS ON SPARCSATION 5. INTERCONNECT
5715 5 ExampLE: HIDDEN NoDEs 6000 SWPLES. VALUES BASED oN 100 EPocHs
T )
g 5% Stn R Average Sparsity | CPU Savings
Z10 (Epochs) (%) (sec) |in CPU(%)
E
<) 0 10 0 899.24 —
3 5 0.001 10 46.37 563.22 37.4
g 0.01 10 63.82 444.21 50.6
5 10 15
Delay from NILT (ns)
(a) The results demonstrated that much less CPU time was needed
by the sparse technique to achieve the same model accuracy
- +5% o as that from the standard dense technique. The new technique
£15 A results in a more efficient model development. The neural-
g -5% network models developed can be used in an interactive
Z 10 CAD and optimization providing faster on-line solutions and
E speeding up design cycle.
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