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Abstract—Recently, circuit analysis and optimization featuring
neural-network models have been proposed, reducing the com-
putational time during optimization while keeping the accuracy
of physics-based models. We present a novel approach for fast
training of such neural-network models based on the sparse
matrix concept. The new training technique does not require
any structure change in neural networks, but makes use of the
inherent nature of neural networks that for each pattern some
neuron activations are close to zero, and hence, have no effect on
network outputs and weights update. Much of the computation
effort is saved over standard training techniques, while achieving
the same accuracy. FET device and VLSI interconnect modeling
examples verified the proposed technique.

Index Terms—Modeling, neural network, optimization, simu-
lation.

I. INTRODUCTION

A CCURATE and fast circuit and device models are of
important concern in circuit analysis and optimization

problems [1], [2]. For device models, the accuracy of physics-
based models of active, passive, and transmission-line ele-
ments is required, but is at the expense of much increased
computational cost [3] due to the complexity of physics
equations, which consist of field equations (e.g., Maxwell’s
equations). Circuit simulation involves: 1) solving the overall
circuit equation by relating currents and voltages at each
node of the circuit and 2) finding the output response of
interest (e.g., delay in an interconnect network). Solving the
circuit equation is central processing unit (CPU) intensive,
especially for complex circuits such as high-speed VLSI
interconnects [1]. In addition, circuit analysis and optimization
is an iterative process in nature and requires repeated circuit
simulation, which is CPU time consuming. To address this
problem, the following two types of approximations have been
previously utilized: the multidimensional polynomial (or its
variants such as splines or response surface) models, (e.g., [2],
[4], to approximate and replace original simulations during
optimization; however, this approach can handle only mild
nonlinearity in high-dimensional space. It typically requires
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model building or updating during optimization, consuming
valuable on-line CPU time), and the lookup table approach,
(e.g., [5], [6], to approximate and to replace accurate device
or circuit simulations). However, the size of the table exponen-
tially grows with dimension and the table becomes too difficult
to generate and manage when many parameters of a device or
a circuit are involved.

On the other hand, neural networks have been proposed
to solve a wide variety of problems apart from the signal-
processing area. It has been applied to microwave impedance
matching [7] to study the effects of design factors on printed
circuit-board (PCB) assembly yield [8], in modeling the prop-
erties of silicon–dioxide films [9], in via modeling [10] and
minimization problems [11], in manufacturing process mod-
eling [12], and in monolithic-microwave integrated-circuit
(MMIC) passive-element modeling [13]. Recently, the feasi-
bility and efficiency of using neural networks for physics-based
device and circuit-level modeling for interactive computer-
aided design (CAD) and optimization have been demonstrated
[14]–[16]. The approach uses a feed-forward neural-network
model to represent devices and circuits. The model is much
simpler than device physics equations while retaining similar
accuracy. Much computation is shifted from on-line optimiza-
tion to off-line training of neural-network models.

Backpropagation (BP) [17], [18] is probably the most com-
mon algorithm used today in training feed-forward multilayer
perceptron (MLP) neural networks. However, BP despite
its popularity, suffers from serious limitations such as the
computation effort and longer training times. This is also
true in our application of circuit optimization and statistical
design [15]. To alleviate these difficulties, much studying
about algorithms has been done to achieve faster learning.
These algorithms are based either on changing the network
structure [20], using new activation functions [21], or turning
to optimization techniques [22]–[24].

In this paper, we present a novel approach for fast training
of feed-forward MLP neural networks based on the sparse
matrix and decomposition concepts. The sparsity concept is
commonly used in the circuit-analysis area, but its potential has
not been fully exploited in the neural-network area. The new
training technique, which we call the sparse-training technique,
does not require any structure change in neural networks, nor
does it require an initial network that is larger than necessary,
as is the case for most pruning techniques [25]–[27], but
instead makes use of the inherent nature of neural networks

0018–9480/97$10.00 1997 IEEE



ZAABAB et al.: DEVICE AND CIRCUIT-LEVEL MODELING USING NEURAL NETWORKS 1697

Fig. 1. Standard neural-network configuration.

that for each sample (some neuron activations are close to
zero), gives rise to sparsity in the network, and hence, have
no effect on network outputs and weights update. Much of
the computation effort is saved while achieving the same
accuracy if on a pattern basis these neurons are not taken into
consideration in the learning process. It is understood that the
sparse approach is applied once the neural-network structure
is optimized, i.e., the best suitable number of hidden neurons
is determined.

The sparse technique is used to train neural networks
for both device- and circuit-level modeling. At the device
level, the neural network represents a physics-oriented FET
model, yet without the need to solve device physics equations
repeatedly during optimization. At the circuit level, the neural
network speeds up optimization by replacing repeated circuit
simulations. Compared to standard BP training (hereafter
referred to as thedense technique) the sparse approach yields
CPU speed up while maintaining the same accuracy.

II. NEURAL-NETWORK MODELS FORDEVICES AND CIRCUITS

A neural network consists of a collection of interconnected
neurons. Let be a -vector containing parameters of a given
device or a circuit, e.g., gate-length and gatewidth of a FET
or geometrical and physical parameters of high-speed VLSI
interconnects [1], etc. Let be a -vector representing various
responses of the device or the circuit under consideration,
e.g., drain current of an FET. The relationship betweenand
response is multidimensional and nonlinear.

A. Neural-Network Models

To model such a nonlinear relationship, a multilayer neural
network is employed. We use a three-layer neural network with

neurons in the input layer,neurons in the output layer, and
neurons in the hidden layer, as shown in Fig. 1. The input

and output layers correspond to device or circuit parameters
and output responses, respectively. The hidden layer is

represented by a-vector . Let
and be vectors representing the
th sample of the inputs and outputs, respectively,

, where is the total number of data samples.
The weighting factors between the input and the hidden layers
are , and between the hidden and the output layers are,
where , , and .
The output from the neural network can be computed from
circuit and device parameters as

(1)

where is the output activation of theth hidden neuron,
defined as

(2)

and where is a threshold value for theth hidden neuron.

B. Model Determination with Conventional
Dense-Training Approach

The procedure to determine parameters in the neural-
network model, is called neural-network learning or training.
During learning, the neural network automatically adjusts its
weights and thresholds (i.e., , , and ) so that the error

between neural-network predicted and sampled outputs
is as follows:

(3)

and is minimized. The weights and thresholds update equations
are given in [15]. In a conventional dense-training technique,
all weights and all thresholds are updated for each sample, and
this requires computing the error gradient for each weight and
for each threshold in the network.

The sample data can be obtained by device
or circuit simulations done off-line, or obtained directly from
measurement. Equations (1) and (2) constitute the forward
propagation, while (3) and the update equations constitute the
backward propagation. During training, an epoch represents
one forward and backward propagation through all training
samples. Many epochs are needed to minimize the errorfor
a complete training process. The model parameters are then
the final set of values , , and .
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III. A SPARSE-TRAINING APPROACH

TO MODEL DETERMINATION

It is an inherent nature of neural-network models that on a
sample pattern basis, hidden neurons have different activations,
i.e., some neurons are zero or close to zero and some others
are not. Our approach makes use of this inherent information
to speed up the training process as follows.

Consider the same three-layer neural network described
in Section II. Let be the set containing all hidden neu-
rons indexes, i.e., . Let be a small
positive number representing a threshold value. In the neural-
network model structure, the outputsand all error gradients

, , and are proportional to .
If, for a sample pattern , the output of a hidden neuron

, then that neuron has no effect on the network
outputs and weights for that particular sample pattern. We
call the sparsity threshold. The sparse matrix concept is to
associate each samplewith a sparse-index set containing
a subset of hidden neurons that have an effect on the network
and disregard the others. In other words

where

(4)

where is the total number of hidden neurons andis the
total number of samples. We then have . The sparse-
index sets are not necessarily disjoint.
Fig. 2 best illustrates the sparsity concept. Once the subsets

are determined, the computation effort in the forward and
backward propagations is substantially reduced by using the
sparse technique as

(5)

(6)

where

(7)

(8)

and

(9)

where and are positive-valued learning rate and momen-
tum, respectively. The sensitivity through the neural network

Fig. 2. Example of a neural-network configuration showing sparsity and
sparse-index sets.

using the sparse technique is computed as

(10)

(11)

and

(12)

In Fig. 3, the average percentage sparsity of the network is
plotted against the number of epochs. The change of sparsity,
as depicted clearly in Fig. 3, is due to the fact that each hidden
neuron becomes active one time or the other for at least one
or more presented samples. This implies that all weights and
biases are adjusted between epochs, and hence, hidden neuron
activations could change and subsequently alter the network
sparsity. It is then necessary to refresh the sparse-index sets

frequently during training. A refresh-cycle parameter
is consequently introduced and should be chosen so that
the training time is minimized while not compromising the
accuracy.

IV. SPARSE-TRAINING ALGORITHM

A. Algorithm

The sparse-training technique is built in conjunction with
the BP learning algorithm and begins with finding the sparse-
index sets . Training then proceeds with processing only
hidden nodes belonging to while avoiding the others.
Learning-rate adaptation and the use of a momentum term
which are useful to further speed up the training process and
avoid settling in an early local minimum could also be used
in addition to the sparse-learning algorithm as follows.

Step 1. Choose the number of hidden neuronsand ini-
tialize the weights , , and thresholds with
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Fig. 3. Trend of network sparsity as training proceeds. The average sparsity is calculated according to (13).

small random numbers. Choose initial values for
and .

Step 2. Choose values for the sparsity threshold ,
refresh-cycle , and number of iterations .
Set .

Step 3. Sparsity index set refresh cycle:

• For each sample , calculate only the output
of all hidden neurons and determine the sparsity
index set following (4).

Step 4. Set .
Step 5. Supply training sample , let .
Step 6. Forward propagation:

• Compute the network’s outputfollowing (5) and
(6), considering only hidden neurons .

Step 7. Back propagation of the error:

• Compute the error given in (3), and the
gradients , , and
in (10)–(12), where .

• Adjust the parameters of the network ,
and using (7)–(9) with .

Step 8. , if go to Step 5.
Step 9. Compute the cumulative error. If the cumulative

error is less than a given training tolerance,
stop the training process.

Step 10.Adapt learning rate and momentum .
Step 11. , if then go to Step 4.
Step 12. , if go to Step 3 to refresh

the sparse-index sets.
Step 13.Stop.

Fig. 4. Neural network for the MESFET model.

B. Sparse-Training Parameters

The efficiency of the sparse-training technique depends on
the following parameters.

• Sparsity threshold : This parameter controls the spar-
sity threshold level of the network, so it should be chosen
carefully. A too large value for this parameter implies
faster training but may affect the network accuracy and
generalization.

• Sparsity refresh-cycle : This parameter represents the
number of elapsed training epochs after which the sparse-
index sets are recalculated or refreshed. Since gen-
erally the network sparsity change is substantial at the
beginning of training while it stabilizes around a constant
value at the end of training as shown in Fig. 3, this
parameter should be made small at the start and gradually
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Fig. 5. Network learning curve for both dense- and sparse-training techniques. The training errorE is computed following (3).

increased toward the end of training.
• Learning rate and momentum : The benefit as well as

the choice of these parameters remain the same as for the
dense technique [15].

The optimal values of the above-mentioned parameters
are problem-dependent. Actual values of all these training
parameters are given in examples 1 and 2 in Section V.

C. Estimation of Speed-Up Ratio

This applies for the weight adjustments in the backward
pass. Let 1) be the number of hidden nodes in each sparse-
index set , ; 2) be the number of total
epochs used for training; and 3) be the computation effort
per sample required to update all the weights and biases linked
to one hidden neuron, i.e., , and , ,

, and is fixed.
For the standard approach, allhidden neurons are used

for each of the samples. For the sparse approach, assuming
that the sparse pattern does not change between epochs, the
network average sparsity is

Average sparsity (13)

and the speed-up ratio is then

Speed-up ratio (14)

since , the above speed-up ratio is always greater than
one.

TABLE I
SUMMARY OF SPARSITY RESULTS, ON SPARCSTATION 20. FET

EXAMPLE: q = 100, N = 1000. VALUES BASED ON 100 EPOCHS

V. EXAMPLES

A. Physics-Oriented Neural-Network
Model of a MESFET Device

Physics-based device models are very CPU intensive, es-
pecially when used for optimization or iterative simulations.
A neural-network model for this kind of device will be very
efficient in speeding up simulation and optimization [15]. The
physical FET model chosen is the Khatibzadeh and Trew
model [28]. Fig. 4 shows the representation of the neural-
network model input–output parameters, where is the
drain-to-source conduction current.

A three-layer feed-forward neural network is used to model
this FET. The input vector for the neural network has
six parameters (including physical parameters): gate-length,
gatewidth , channel-thickness , and doping-density ,
and the gate–source and drain–source voltagesand .
The number of neurons in the hidden layer is 100. To
train the neural network, each input parameter is allowed to
vary over a certain range, as used in [15]. Both standard
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Fig. 6. Comparison of the dc characteristics using a neural-network model trained with the sparse technique (+) with that trained with the dense technique
(o) and that of the Khatibzadeh and Trew model (�).

TABLE II
TREND OF SPARSITY WITH TRAINING

BP and proposed sparse-learning algorithms are used to train
the network. Table I compares the CPU time results of both
techniques after 100 epochs of training and for different
values of sparsity threshold and refresh-cycle . Note
that corresponds to the standard dense technique. On
the other hand, Table II depicts the trend of network sparsity
as training proceeds for different values of the sparsity-
threshold parameter. Fig. 5 shows the network learning curve.
The sparse-training technique may use similar or slightly
more epochs compared to the dense technique, but since the
computation per epoch is much less, the total training time
achieved by the sparse approach is much lower.

We use new data which is different from the training
samples for verification of the neural-network models. DC
analysis predicted with our trained neural-network models are
compared to those simulated using the original Khatibzadeh
and Trew model shown in Fig. 6.

B. VLSI Interconnect Delay Modeling

Signal delay through interconnect networks is an important
criteria in high-speed VLSI system design [1]. Fig. 7 repre-

Fig. 7. Circuit model of a typical VLSI interconnect configuration in a PCB.

Fig. 8. Neural network for modeling the signal delay of the VLSI intercon-
nect example.
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TABLE III
RANGES OF NEURAL NETWORK INPUT PARAMETERS. VLSI-DELAY EXAMPLE

Fig. 9. Training samples’ sparsity distribution forSth = 0:001.

sents a high-speed VLSI interconnect network modeled by
six transmission lines and sixRC termination ports. Repeated
signal-delay analysis of this type of circuit is CPU intensive if
done using conventional circuit simulators such as SPICE or
Numerical Inverse Laplace Transform (NILT) [29], especially
when a large number of parameters is considered.

A three-layer feed-forward neural network with 21 input
nodes, 30 hidden nodes, and 6 output nodes is used, as shown
in Fig. 8. The 21 input parameters are allowed to take on
values so that all possible configurations which conform to
standard industry requirements are considered. These ranges
of values could be either discrete or continuous, as depicted
in Table III. The six outputs are the propagation delays at
the six termination ports, where delay is the time taken for
the signal to reach 80% of its steady-state value. The sample
data required to build this model was obtained by off-line
simulation using NILT [29]. It is to be noted that the number
of hidden nodes ( ) is the optimized value for this model,
i.e., if the neural network is used with fewer hidden nodes,
the model trained with a standard BP will not converge to a
proper accuracy [16].

To clearly show how sparse the network is, Figs. 9 and
10 depict the distribution of sparsity over all 6000 training
samples for a sparsity threshold and ,
respectively. Table IV compares the CPU time used when
utilizing both dense- and sparse-training techniques on a
SPARCStation 5. After the network is trained, 4000 new
configurations not used for training are used to test the
new model. Fig. 11 shows the good agreement between
the neural-network model trained with the sparse technique
and original network simulation results. The CPU time
used on a SPARCStation 2 to predict the delay of the
4000 configurations was 1.25 min for the neural-network
approach while it was 3.4 h for the network simulation
approach.

VI. CONCLUSIONS

In this paper, we have presented a novel neural-network
training approach based on the sparse matrix concept. The
developed technique uses the inherent property of neural
networks in that the internal activations are usually sparse.
Exploiting this feature, a new algorithm has been developed
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Fig. 10. Training samples’ sparsity distribution forSth = 0:01.

(a)

(b)

Fig. 11. Comparison between signal delay obtained from the sparse neu-
ral-network model with that from original circuit simulation using NILT. (a)
Signal delay at transmission line 5,d5, and (b) delay at transmission line 6,d6.

avoiding much unnecessary computations involved in the
standard BP technique. Device-level and circuit-level neural-
network models were generated using the sparse technique.

TABLE IV
SUMMARY OF SPARSITY RESULTS ON SPARCSTATION 5. INTERCONNECT

EXAMPLE: HIDDEN NODES, 6000 SAMPLES. VALUES BASED ON 100 EPOCHS

The results demonstrated that much less CPU time was needed
by the sparse technique to achieve the same model accuracy
as that from the standard dense technique. The new technique
results in a more efficient model development. The neural-
network models developed can be used in an interactive
CAD and optimization providing faster on-line solutions and
speeding up design cycle.
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